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Abstract

The dynamic characteristics and responses of a flexible rotating disk are analyzed, when the disk has
angular misalignment that is defined by the angle between the rotation and symmetry axes. Based on the
von Karman strain theory and the Kirchhoff plate theory, three equations of motion are derived for the
transverse, radial and tangential displacements when the disk has angular misalignment. The derived
equations are fully coupled partial differential equations through the transverse, radial and tangential
displacements. In particular, the equation of transverse motion is non-linear while the others are linear.
After these partial differential equations and the associated boundary conditions are transformed into a
weak form, the weak form is discretized to a non-linear matrix–vector equation by using the finite element
method. The non-linear equation is linearized in the neighbourhood of a dynamic equilibrium position, and
then the natural frequencies and mode shapes are computed. In addition, the dynamic time responses are
obtained by applying the generalized-a method. The effects of angular misalignment on the natural
frequencies, the mode shapes and the dynamic responses are investigated. The analysis shows that the
angular misalignment causes the natural frequency split and the out-of-plane mode with only one nodal
diameter and no nodal circle has the largest frequency split. It is also found that the angular misalignment
yields the amplitude modulations in the transverse, radial and tangential dynamic responses.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Rotating disks have been interesting research topics for decades because the disks have various
applications, for example, circular saws, disk brakes, fly wheels, turbine rotors and data storage
disks. A lot of studies on the rotating disks have been reported. Some of them have been devoted
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to the dynamics of asymmetric or imperfect circular disks. Tobias and Arnold [1] studied the
influence of imperfection on the backward and forward travelling wave of a rotating disk
experimentally. Leissa et al. [2] investigated the vibration of a circular plate with non-uniform
edge constraints. Perturbation solutions to determine the natural frequencies of almost annular or
circular disks were presented by Parker and Mote [3]. They also analyzed the free vibration of
coupled, asymmetric disk–spindle systems in which both the disk and spindle are flexible [4].
Tseng and Wickert [5,6] studied bolted and eccentrically clamped annular plates. The transverse
free and forced vibrations of a rectangularly orthotropic rotating disk were analyzed by
Phylactopoulos and Adams [7,8]. Related to Refs. [5,6], the spatial modulation of repeated
vibration modes in rotationally periodic structures are studied by Kim et al. [9]. Recently, Chung
and his co-worker [10,11] studied the effects of misalignment between the axes of symmetry and
rotation on the natural frequencies and mode shapes of a rotating disk. They treated a rotating
disk with only translational misalignment, in which the axes of symmetry and rotation are parallel
but not aligned. However, a real rotating disk may have a different type of misalignment called
the angular misalignment. The angular misalignment is defined by the angle between the axes of
symmetry and rotation when these axes are not parallel. To the authors’ knowledge, the effects of
angular misalignment on the dynamic characteristics and responses of a rotating disk have not
been analyzed yet.
The dynamic characteristics of a rotating disk with angular misalignment are investigated in

this paper. Using Hamilton’s principle based on the Kirchhoff plate theory and von Karman
strain theory, the equations of the radial, tangential and transverse motions are derived when a
flexible disk rotates with angular misalignment. The finite element method is used to obtain
approximate solutions. The weak form is derived from the equations of motion and the associate
boundary conditions and then a non-linear matrix–vector equation is obtained by discretization
of the weak form with the four-node annular sector elements defined in Ref. [11]. After the
matrix–vector equation is linearized around a dynamic equilibrium position, the effects of angular
misalignment on the natural frequencies and mode shapes are analyzed. Furthermore, in order to
compute dynamic responses from the non-linear equation, the generalized-a time integration
method [12] is applied to the equation along with the Newton–Raphson method. The effects of
angular misalignment on the dynamic responses are also analyzed from the computed responses.

2. Equations of motion

Consider a flexible disk fixed to a shaft with angular misalignment, which is illustrated in Fig. 1.
The disk rotates about the rotation axis or the shaft axis with a rotating speed O and a rotating
acceleration ’O: The rotation axis of the disk is not parallel to the symmetry axis, as shown in
Fig. 1. The angular misalignment of the disk is defined by the angle f between the rotation axis
and the symmetry axis. Both the XYZ and xyz co-ordinate systems of Fig. 1 are fixed to the disk.
Since the Z-axis is parallel to the rotation axis of the disk and the z-axis is perpendicular to the
disk, the angular misalignment f can also be defined by the angle between the Z- and z-axis. This
angle is the same as the tilting angle measured from the XY plane to the x-axis. Assuming that the
angular misalignment is small, the inner boundary of the disk may be regarded as a circle. Hence,
the disk is fixed at the inner radius r ¼ a and free at the outer radius r ¼ b; as shown in Fig. 1(c).
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The position of point P inside the disk is defined by the radial co-ordinate r and the tangential
co-ordinate y and the transverse co-ordinate z: It is noted that the tangential co-ordinate is
measured with respect to the xyz co-ordinate system.
The displacement of point P can be represented by the radial displacement ur; the tangential

displacement uy and the transverse displacement uz: Using the Kirchhoff plate theory, these
displacements are expressed in terms of the displacements for a point on the middle surface of
the disk:

ur ¼ u � z
@w

@r
; uy ¼ v � z

@w

r@y
; uz ¼ w; ð1Þ

where u; v and w are the radial, tangential and transverse displacements of a point on the
middle surface of the disk, respectively. Note that u; v and w are functions of time t as well as the
co-ordinates r and y:
The kinetic energy of the flexible rotating disk needs to be expressed in terms of the

displacements and the rotating speed. The position vector of point P is

r ¼ ðr þ urÞer þ uyey þ uzez; ð2Þ

where er; ey and ez are the unit vectors in the r; y and z directions. When the shaft rotates with the
rotating speed O; the angular velocity of the disk, x; is given by

x ¼ Oð�sin f cos yer þ sin f sin yey þ cosfezÞ: ð3Þ
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Fig. 1. Schematics of a rotating disk with angular misalignment: (a) a three-dimensional view; (b) a view in the

y direction; and (c) a view in the z direction.
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Using Eqs. (1)–(3), the velocity vector of point P; v; can be given by

v ¼ vp � zvb; ð4Þ

where

vp ¼
@u

@t
þ Oð�v cosfþ w sin f sin yÞ

� �
er þ

@v

@t
þ O½ðr þ uÞcosfþ w sin f cos y�

� �
ey

þ
@w

@t
� O½ðr þ uÞsin f sin yþ v sin f cos y�

� �
ez; ð5Þ

vb ¼ �
@2w

@t@r
þ O

@w

r@y
cosf

� �
er �

@2w

r@t@y
þ O

@w

@r
cosf

� �
ey

þ O
@w

r@y
sinf cos yþ

@w

@r
sin f sin y

� �
ez: ð6Þ

Assuming that the disk thickness is small, the kinetic energy of the rotating disk may be
approximate to

T ¼ 1
2
rh

Z
A

vp � vp dA; ð7Þ

where r is the mass density of the disk, h is the thickness, and A is the area.
The potential energy of the disk may be given by

U ¼
1

2

Z
A

eTr dA; ð8Þ

where e is the strain vector and r is the stress vector. Using the von Karman strain theory, the
stress vector can be expressed as

e ¼
eL

p þ eN
p

eL
b

( )
; ð9Þ

where the superscripts L and N represent linear and non-linear terms, respectively, and the
subscripts p and b represent the in-plane and bending contributions; eL

p ; eN
p and eL

b are given by

eL
p ¼

@u

@r
;
@v

r@y
þ

u

r
;
@u

r@y
þ

@v

@r
�

v

r

� �T

; eN
p ¼

1

2

@w

@r

� �2

;
1

2

@w

r@y

� �2

;
@w

@r

@w

r@y

( )T

;

eL
b ¼ �

@2w

@r2
;�

@w

r@r
þ

@2w

r2@y2

� �
;�2

@2w

r@r@y
�

@w

r2@y

� �� �T

: ð10Þ

On the other hand, the stress vector may be written as

r ¼ DeL; ð11Þ

where

r ¼
rp

rb

( )
; eL ¼

eL
p

eL
b

( )
; D ¼

Dp 0

0 Db

" #
: ð12Þ
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In Eq. (12), rp and rb represent the linearized internal force vector and the internal moment
vector, given by

rp ¼ fqr; qy; qryg
T; rb ¼ fmr;my;mryg

T; ð13Þ

and Dp and Db are given by

Dp ¼ D0

1 n 0

n 1 0

0 0 ð1� nÞ=2

2
64

3
75; Db ¼ D

1 n 0

n 1 0

0 0 ð1� nÞ=2

2
64

3
75; ð14Þ

where the extensible rigidity D0 and the bending rigidity D are defined by

D0 ¼
Eh

1� n2
; D ¼

Eh3

12ð1� n2Þ
: ð15Þ

in which E is Young’s modulus and n is the Poisson ratio. In Eqs. (13), the linearized internal
forces per unit length (qr; qy and qry) and the internal moments per unit length (mr; my and mry) are
given by

qr ¼ D0
@u

@r
þ n

@v

r@y
þ

u

r

� �� �
; qy ¼ D0 n

@u

@r
þ

@v

r@y
þ

u

r

� �
; qry ¼

1� n
2

D0
@u

r@y
þ
@v

@r
�

v

r

� �
;

mr ¼ �D
@2w

@r2
þ

n
r

@w

@r
þ

@w

r@y

� �� �
; my ¼ �D n

@2w

@r2
þ
1

r

@w

@r
þ

@w

r@y

� �� �
;

mry ¼ �
ð1� nÞD

r

@2w

@r@y
�

@w

r@y

� �
: ð16Þ

If there exist non-conservative forces, the work done by the non-conservative forces is

Wnc ¼
Z

A

ðPru þ Pyv þ PzwÞ dA; ð17Þ

where Pr; Py and Pz are non-conservative forces in the r; y and z direction, respectively.
Using the kinetic energy of Eq. (7), the potential energy of Eq. (8) and the non-conservative

work of Eq. (17), Hamilton’s principle provides the equations of motion and the associated
boundary conditions. When the flexible rotating disk has angular misalignment f; the equations
of motion are given by

rh
@2u

@t2
� 2O

@v

@t
cosfþ 2O

@w

@t
sin f sin y� O2ð1� sin2 f cos2 yÞu

�

� ðO2 sin2 f cos y sin yþ ’O cosfÞv � ðO2 cosf cos y� ’O sin yÞw sin f
�

�
@qr

@r
�

@qry

r@y
�

qr � qy

r
¼ rhO2rð1� sin2 f cos2 yÞ þ Pr; ð18Þ
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rh
@2v

@t2
þ 2O

@u

@t
cosfþ 2O

@w

@t
sin f cos y� ðO2 sin2 f cos y sin y� ’O cosfÞu

�

� O2ð1� sin2 f sin2 yÞv þ ðO2 cosf sin yþ ’O cos yÞw sin f
�

�
@qy

r@y
�

@qry

@r
� 2

qry

r
¼ rhrðO2 sin2 f sin y cos y� ’O cosfÞ þ Py; ð19Þ

rh
@2w

@t2
� 2O

@u

@t
sin f sin y� 2O

@v

@t
sin f cos y� ðO2 cosf cos yþ ’O sin yÞu sin f

�

þ ðO2 cos f sin y� ’O cos yÞv sin f� O2w sin2 f
�
þ Dr4w �

@

r@r
r qr

@w

@r
þ qry

@w

r@y

� �� �

�
@

r@y
qry

@w

@r
þ qy

@w

r@y

� �
¼ rhrðO2 cosf cos yþ ’O sin yÞsin fþ Pz; ð20Þ

where

r2 ¼
@2

@r2
þ

@

r@r
þ

@2

r2@y2
: ð21Þ

The corresponding boundary conditions are the same as those of a conventional rotating disk.
The boundary conditions are

u ¼ 0; v ¼ 0; w ¼ 0;
@w

@r
¼ 0 at r ¼ a; ð22Þ

qr ¼ 0; qry ¼ 0; mr ¼ 0; �D
@r2w

@r
þ

@mry

r@y
¼ 0 at r ¼ b: ð23Þ

Eqs. (18)–(20) represent the equations of motion that predominantly govern the radial,
tangential and transverse motions when the rotating disk possesses the angular misalignment.
Note that Eqs. (18) and (19) are linear but Eq. (20) is non-linear because qr; qy and qry are
functions of u and v: It is interesting that the radial, tangential and transverse motions are fully
coupled in Eqs. (18)–(20). Hence, the transverse displacement influences the radial and tangential
displacements. This is not observed in a rotating disk with translational misalignment. When a
rotating disk has translational misalignment instead of the angular misalignment, the radial and
tangential motions are governed by only the radial and tangential displacements while the
transverse motion is governed by all the displacements, namely, the radial, tangential and
transverse displacements. Therefore, in the case of a disk with the translational misalignment, the
transverse motion does not have an effect on the radial and tangential motions. If the angular
misalignment is equal to zero, i.e., f ¼ 0; Eqs. (18)–(20) reduce to

rh
@2u

@t2
� 2O

@v

@t
� O2u � ’Ov

� �
�

@qr

@r
�

@qry

r@y
�

qr � qy

r
¼ rhO2r þ Pr; ð24Þ

rh
@2v

@t2
þ 2O

@u

@t
þ ’Ou � O2v

� �
�

@qy

r@y
�

@qry

@r
� 2

qry

r
¼ �rhr ’Oþ Py; ð25Þ
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rh
@2w

@t2
þ Dr4w �

@

r@r
r qr

@w

@r
þ qry

@w

r@y

� �� �
�

@

r@y
qry

@w

@r
þ qy

@w

r@y

� �
¼ Pz: ð26Þ

These equations are the same as those for Ref. [11] when the translation misalignment is zero. See
Ref. [11] for the details of the equations of motion for a rotating disk with translational
misalignment.

3. Finite element formulation

The finite element formulation is used in order to obtain approximate solutions from the partial
differential equations of motions. The finite element method is one of the most useful tools to
discretize partial differential equations to ordinary differential equations. It is not easy to find the
comparison functions that satisfy both the essential and natural boundary conditions given by
Eqs. (22) and (23). This study adopts the finite element method that uses the admissible functions
often called the shape functions instead of the comparison functions. Since the admissible
functions may satisfy only the essential boundary conditions, the difficulty to find the comparison
functions can be avoided.
The trial and weighting functions need to be defined before deriving the weak form. The trial

functions are functions in the Hilbert space H1; which satisfy both the essential and natural
boundary conditions. Denoting the trial functions in the r; y and z directions by u; v and w; they
can be defined as follows:

ðu; vÞAVuv ¼ fðu; vÞ j uAH1; vAH1; ujr¼a ¼ 0; vjr¼a ¼ 0; qrjr¼b ¼ 0; qryjr¼b ¼ 0g; ð27Þ

wAVw ¼fw j wAH1; @w=@rAH1; @w=@yAH1;wjr¼a ¼ 0; @w=@rjr¼a ¼ 0;mrjr¼b ¼ 0;

� D@r2w=@r þ @mry=r@yjr¼b ¼ 0g; ð28Þ

where Vuv is the trial function space for the radial and tangential displacements and Vw is the one
for the transverse displacement. Eq. (28) implies that both the transverse displacement and its
derivatives should be in the Hilbert space. This is because the displacement as well as the slopes
should be described as degrees of freedom in the plate theory of the finite element method. The
weighting function is defined as an arbitrary function, which is zero on the boundary where the
essential boundary conditions are prescribed. Therefore, the weighting functions for the radial,
tangential and transverse displacements, which are represented by %u; %v and %w; are given by

ð %u; %vÞA %Vuv ¼ fð %u; %vÞ j %uAH1; %vAH1; %ujr¼a ¼ 0; %vjr¼a ¼ 0g; ð29Þ

%wA %Vw ¼ f %w j %wAH1; @ %w=@rAH1; @ %w=@yAH1; %wjr¼a ¼ 0; @ %w=@rjr¼a ¼ 0g: ð30Þ

As the first step of the finite element formulation, the weak form should be derived from the
strong form given by the partial differential equations (18)–(20) and the associated boundary
conditions given by Eqs. (22) and (23). Since Eqs. (18)–(20) are fully coupled with each other, only
one weak form is derived. The weak form is obtained by multiplying Eqs. (18)–(20) by the
weighting functions %u; %v and %w; respectively, summing the equations, and then integrating
the resultant equation over the disk area A with the divergence theorem. The weak form can be
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expressed as

rh

Z
A

%u
T @

2u

@t2
dA þ 2Orh

Z
A

%u
TUg

@u

@t
dA � O2rh

Z
A

%u
TUku dA þ ’Orh

Z
A

%u
TUgu dA

þ
Z

A

ð%eLÞTDeL dA þ
Z

A

%hTQh dA ¼
Z

A

%u
Tf dA; ð31Þ

where

u ¼

u

v

w

8><
>:

9>=
>;; %u ¼

%u

%v

%w

8><
>:

9>=
>;; h ¼

@w

@r
@w

r@y

8><
>:

9>=
>;; %h ¼

@ %w

@r
@ %w

r@y

8><
>:

9>=
>;;

%eL ¼
@ %u

@r
;
@%v

r@y
þ

%u

r
;
@ %u

r@y
þ

@%v

@r
�

%v

r
;�

@2 %w

@r2
;�

1

r

@ %w

@r
þ

@2 %w

r@y2

� �
;�

2

r

@2 %w

@r@y
�

@ %w

r@y

� �� �T

;

Ug ¼

0 �cosf sin f sin y

cosf 0 sin f cos y

�sin f sin y �sin f cos y 0

2
64

3
75;

Uk ¼

1� sin2 f cos2 y sin2 f cos y sin y cosf sin f cos y

sin2 f cos y sin y 1� sin2 f sin2 y �cosf sin f sin y

cosf sin f cos y �cosf sin f sin y sin2 f

2
664

3
775; Q ¼

qr qry

qry qy

" #
;

f ¼

rhO2rð1� sin2 f cos2 yÞ þ Pr

rhrðO2 sin2 f sin y cos y� ’O cosfÞ þ Py

rhrðO2 cosf cos yþ ’O sin yÞsin fþ Pz

8>><
>>:

9>>=
>>;: ð32Þ

Using the four-node annular sector elements defined in Ref. [11], the trial function vector u in
an element may be presented as

u ¼ NT de; ð33Þ

where de is the element displacement vector and N is the shape function vector that is a function of
r and y: It should be noted that each node of the element has six degrees of freedom of u; v; w;
@w=@r; @w=@y and @2w=@r@y: Therefore, the shape function vector is a 24 3 matrix and element
displacement vector is given by

de ¼fu1; v1;w1; ð@w=@rÞ1; ð@w=@yÞ1; ð@
2w=@r@yÞ1;y; u4; v4;w4; ð@w=@rÞ4;

ð@w=@yÞ4; ð@
2w=@r@yÞ4g

T: ð34Þ

Similarly, the h vector in Eqs. (32) can be written as

h ¼ NT
y d

e; ð35Þ
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where Ny is a 24 3 matrix that is also a function of r and y: On the other hand, introducing
Eq. (33) into the second equation of Eqs. (12), the linearized strain is given by

eL ¼ Bde; ð36Þ

where B is a 24 6 matrix. The weighting function vectors %u; %h and %eL are given by

%u ¼ NT %de; %h ¼ NT
y
%de; %eL ¼ B%de; ð37Þ

where %de is an arbitrary 24 1 vector.
The next step of the finite element formulation is the spatial discretization of the weak form.

After the disk area A is discretized by using Ne elements, substitution of Eqs. (33) and (35)–(37) in
Eq. (31) results inXNe

e¼1

ð%deÞTfme .de þ 2Oge ’de þ ½ke � O2me
F þ ’Oge

F�d
e þ peg ¼

XNe

e¼1

ð%deÞTfe; ð38Þ

where

me ¼ rh

Z
Ae

NNT dA; ge ¼ rh

Z
Ae

NUgN
T dA; ke ¼

Z
Ae

BTDB dA;

me
F ¼ rh

Z
Ae

NUkN
T dA;

ge
F ¼ rh

Z
Ae

NUgN
T dA; pe ¼

Z
Ae

NyQN
T
y dA

� �
de; fe ¼

Z
Ae

Nf dA; ð39Þ

in which Ae is the element area. All the matrices in Eqs. (39) are 24 24 matrices while the
element internal force vector pe and the element load vector fe are 24 1 vectors. Note that the
element internal force vector is a non-linear function of the element displacement vector de;
because the elements of Q are functions of ui and vi where i ¼ 1; 2; 3; and 4.
Through the assembling procedure, a set of ordinary differential equations can be obtained in

matrix–vector form. Since %de is an arbitrary vector, by assembling the element matrices and vectors,
Eq. (38) can be written as the global matrix–vector equation. The global equation is given by

M.dþ 2OG’dþ ½K� O2MF þ ’OGF� dþ PðdÞ ¼ F; ð40Þ

where d is the global displacement vector,M is the global mass matrix, G is the global gyroscopic
matrix, K is the global stiffness matrix, MF is the global motion-induced mass matrix, GF is the
global motion-induced gyroscopic matrix, PðdÞ is the non-linear global internal force vector due to
the membrane stresses, and F is the global load vector. These matrices and vectors are defined by

d ¼fu1; v1;w1; ð@w=@rÞ1; ð@w=@yÞ1; ð@
2w=@r@yÞ1;y; uNeþ1; vNeþ1;wNeþ1; ð@w=@rÞNeþ1;

ð@w=@yÞNeþ1; ð@
2w=@r@yÞNeþ1g

T; ð41Þ

M ¼ A
Ne

e¼1
me; G ¼ A

Ne

e¼1
ge; K ¼ A

Ne

e¼1
ke; MF ¼ A

Ne

e¼1
me

F; GF ¼ A
Ne

e¼1
ge
F;

P ¼ A
Ne

e¼1
pe; F ¼ A

Ne

e¼1
fe; ð42Þ
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where A denotes the assembly operator. When the number of the discretized elements is Ne; the
sizes of d; P and F are 6ðNe þ 1Þ  1 and the sizes of M; G; K; MF and GF are 6ðNe þ 1Þ 
6ðNe þ 1Þ: It should be noted again that Eq. (40) is a non-linear equation because P is a function
of d:

4. Natural frequencies and mode shapes

In order to obtain the natural frequencies and mode shapes of the rotating disk with angular
misalignment, the non-linear equation of motion given by Eq. (40) is linearized by the
perturbation method. In the neighbourhood of an equilibrium position, Eq. (40) is linearized
assuming that the motion of the disk is in a dynamic steady state, i.e., ’O ¼ 0: Denoting the
displacement vector of the equilibrium position by d� and a perturbed displacement vector from
the equilibrium position by Dd; the displacement vector can be written as

d ¼ d� þ Dd: ð43Þ

Substitution of Eq. (43) into Eq. (40) produces a dynamic equilibrium equation in a steady state
and a perturbed equation from the equilibrium position. The equilibrium equation is given by

½K� O2MF�d� þ Pðd�Þ ¼ F; ð44Þ

where the global load vector F is computed when ’O ¼ 0: Since Eq. (44) is non-linear, the
equilibrium position vector d� can be obtained by a non-linear equation solver, e.g., the Newton–
Raphson method. The perturbed equation may be expressed as

MD.dþ 2OGD’dþ ½Kþ KT � O2MF�Dd ¼ 0; ð45Þ

where KT is the tangent matrix at the equilibrium position, defined by

KT ¼
@P

@d

����
d¼d�

: ð46Þ

From the perturbed equation (45), the eigenvalue problems are derived, from which the natural
frequencies and mode shapes can be computed. Assume a solution of Eqs. (45) as

Dd ¼ Xeiont; ð47Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
; on is the natural frequency; and X is the modal vector. Substitution of Eq. (47)

into Eq. (45) leads to the eigenvalue problems given by

½Kþ KT � O2MF � o2
nMþ 2ionOG�X ¼ 0: ð48Þ

To verify the equations of motion derived in this study, convergence tests for the natural
frequencies are performed. The dimensions and material properties of a disk used in computations
of this paper are a ¼ 0:015 m; b ¼ 0:065 m; h ¼ 0:0012 m; r ¼ 1200 kg=m3; n ¼ 0:3 and E ¼
65:5 106 N=m2: The equations of motion (24)–(26) when there is no angular misalignment, i.e.,
f ¼ 0�; are identical to the equations of Ref. [11] when there is no translational misalignment,
i.e., e ¼ 0: Therefore, there is no need to check the convergence of the natural frequencies
when a disk without angular misalignment has a constant rotating speed. Tables 1 and 2
present the convergence characteristics of the natural frequencies when the disk has f ¼ 2� and
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O ¼ 1000 rad=s: In Tables 1 and 2, M and N stand for the numbers of elements in the radial and
tangential directions and the mode ðm; nÞ represents a mode with m nodal circles and n nodal
diameters. The subscripts s and a of Table 1 denote the symmetric and asymmetric modes,
respectively, while the subscripts f and b of Table 2 denote the forward and backward travelling
modes. Tables 1 and 2 present the convergence characteristics of the natural frequencies of the
out-of-plane and in-plane motions, respectively. Since the natural frequencies computed from
Eq. (48) involve both the in-plane and out-of-plane natural frequencies, the computed frequencies
need to be sorted into the in-plane and out-of-plane natural frequencies. When the angular
misalignment is small, this sorting can be performed by examining the mode shapes of the
corresponding natural frequencies. However, it may be impossible to distinguish between the in-
plane and out-of-plane modes if the angular misalignment is large. As shown in Tables 1 and 2,
the natural frequencies of the in-plane and out-of-plane motions converge as the number of
elements increases. It is also shown that the natural frequencies when M ¼ 10 and N ¼ 24 are
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Table 1

Convergence characteristics of the natural frequencies (rad/s) for the out-of-plane motion when f ¼ 2�; O ¼ 1000 rad=s
and ’O ¼ 0 rad=s2

M N Mode

(0,0) ð0; 1Þs ð0; 1Þa ð0; 2Þs ð0; 2Þa

4 964.8201 1060.7303 1140.6227 1532.2139 1538.3722

8 964.8136 1060.7141 1140.6195 1531.4162 1532.0282

4 12 964.8016 1060.7134 1140.6138 1531.2321 1531.9314

16 964.7761 1060.7121 1140.6023 1531.1996 1531.9267

20 964.7053 1060.7095 1140.5756 1531.1890 1531.9256

24 964.3757 1060.7031 1140.4886 1531.1841 1531.9249

4 955.0362 1049.3734 1134.4084 1529.7274 1535.9080

8 955.0294 1049.3592 1134.4054 1528.9221 1529.5430

6 12 955.0169 1049.3584 1134.4002 1528.7390 1529.4421

16 954.9903 1049.3569 1134.3897 1528.7073 1529.4334

20 954.9164 1049.3540 1134.3653 1528.6972 1529.4333

24 954.5752 1049.3470 1134.2848 1528.6926 1529.4329

4 951.0032 1044.6439 1131.7349 1528.3022 1534.4869

8 950.9962 1044.6306 1131.7321 1527.4929 1533.7047

8 12 950.9835 1044.6298 1131.7270 1527.3105 1528.1195

16 950.9563 1044.6283 1131.7168 1527.2792 1528.0166

20 950.8810 1044.6252 1131.6935 1527.2693 1528.0068

24 950.5346 1044.6180 1131.6155 1527.2649 1528.0058

4 949.0614 1042.2929 1130.4224 1527.5195 1528.0057

8 949.0544 1042.2801 1130.4196 1526.7078 1527.3380

10 12 949.0415 1042.2792 1130.4146 1526.5258 1527.2339

16 949.0141 1042.2777 1130.4046 1526.4948 1527.2236

20 948.9381 1042.2746 1130.3817 1526.4850 1527.2222

24 948.5888 1042.2672 1130.3050 1526.4807 1527.2221
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sufficiently converged. Therefore, the further computations use a finite element model that has 10
and 24 elements in the radial and tangential directions.
First, consider the effects of the rotating speed on the natural frequencies when the disk has

angular misalignment. When the disk has angular misalignment f ¼ 2�; the variations of the
natural frequencies for the rotating speed are depicted in Fig. 2. As pointed out before, both
the out-of-plane and in-plane natural frequencies are computed simultaneously from Eq. (48). In
Fig. 2, the thin lines represent the natural frequencies for the out-of-plane motion and the thick
lines for the in-plane motion. In order to investigate the behaviours of the natural frequencies in
more detail, only the out-of-plane natural frequencies are presented as functions of the rotating
speed in Fig. 3, where the solid lines are for f ¼ 2� and the dotted lines for f ¼ 0�: The mode split
phenomenon, which means that one natural frequency is split into two as the rotating speed
increases, is observed in the (0,1) mode of Fig. 3. In fact all the modes except the (0,0) mode have
mode splits if the rotating disk has angular misalignment. Since the amounts of the frequency
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Table 2

Convergence characteristics of the natural frequencies (rad/s) for the in-plane motion when f ¼ 2�; O ¼ 1000 rad=s and
’O ¼ 0 rad=s2

M N Mode

ð0; 0Þ ð0; 1Þb ð0; 1Þf ð0; 2Þb ð0; 2Þf

4 1273.2136 2996.8148 6141.9265 9294.4430 17195.263

8 1273.1825 2974.2066 4429.9796 5968.5759 8357.9495

4 12 1273.1821 2930.2839 4391.7360 5596.4974 7446.1026

16 1273.1816 2903.7753 4360.0797 5463.6628 7254.7026

20 1273.1805 2894.9633 4345.5518 5347.3738 7110.8778

24 1273.1787 2891.3606 4337.6933 5302.6313 6896.3085

4 1262.5498 2959.3927 6040.2772 9182.1903 15457.608

8 1262.5187 2958.8675 4394.7380 5921.6181 8240.2810

6 12 1262.5184 2899.8877 4379.4302 5491.4095 7383.7389

16 1262.5178 2871.7581 4347.4811 5410.6356 7198.9481

20 1262.5169 2861.4757 4332.8192 5292.5268 7053.1921

24 1262.5152 2857.0462 4324.8883 5230.0615 6839.8444

4 1258.4500 2940.3418 6005.5051 9142.1340 15094.899

8 1258.4189 2939.8146 4377.3165 5901.7135 8178.0022

8 12 1258.4186 2888.1023 4374.4891 5451.8180 7356.0285

16 1258.4181 2858.9173 4342.4250 5390.9092 7178.2802

20 1258.4171 2847.4414 4327.7104 5272.1610 7029.1496

24 1258.4156 2842.2156 4319.7512 5209.1050 6816.2104

4 1256.4897 2930.2369 5987.4753 9123.4327 15013.119

8 1256.4586 2929.7096 4368.1706 5890.8483 8147.6240

10 12 1256.4583 2882.3995 4367.7959 5431.3377 7341.5137

16 1256.4578 2852.7457 4339.9162 5381.4159 7166.9528

20 1256.4569 2840.7042 4325.1759 5262.3574 7016.9214

24 1256.4554 2835.0448 4317.2028 5199.0738 6804.1855

J. Wook Heo, J. Chung / Journal of Sound and Vibration 274 (2004) 821–841832



splits in the (0,2) and (0,3) modes are not significant, it is hard to find the mode splits of those
modes in Fig. 3. In order to manifest the frequency splits, Fig. 4 demonstrates the differences
between the natural frequencies when f ¼ 2� and f ¼ 0�: These differences are given by Don ¼
onjf¼2� � onjf¼0� : Compared to the other modes, the (0,1) mode exhibits the largest amount of
frequency split as shown in Fig. 4. It is also observed that differences between the natural
frequencies of the symmetric and asymmetric modes become large as the rotating speed increases.
Fig. 5 shows the mode shapes of the out-of-plane motion when the disk has the angular

misalignment f ¼ 2� and the rotating speed O ¼ 1000 rad=s: As illustrated in Fig. 5, the
symmetric mode shapes are symmetric about the xz plane, but the asymmetric modes are not
symmetric. It is interesting that the asymmetric (0,1) and (0,2) modes rotate by approximately 90�

and 45� from the symmetric (0,1) and (0,2) modes, respectively. The discussion on the rotation of
modes can be found in Ref. [13].
The variations of the in-plane natural frequencies for the rotating speed are presented in Fig. 6,

where the solid and dotted lines stand for the natural frequencies when f ¼ 2� and f ¼ 0�;
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respectively. Note that, for the (0,1) or higher in-plane modes with the nodal diameter, the natural
frequency split exists regardless of the existence of angular misalignment. In fact, higher in-plane
modes, for example, the (0,2) and (0,3) modes show similar natural frequency split as the rotating
speed increases. Therefore, the frequency splits in the in-plane modes are not caused by the
angular misalignment. These splits result from the gyroscopic effect when the disk rotates. The
increasing and decreasing frequencies for the variation of the rotating speed are called the natural
frequencies of the forward and backward travelling modes, respectively. Fig. 7 shows the
differences between the in-plane natural frequencies when f ¼ 2� and f ¼ 0� versus the rotating
speed. It is interesting that the (0,0) in-plane mode has the largest difference of the natural
frequencies between the disks with and without angular misalignment, compared to the ð0; 1Þb and
ð0; 1Þf modes.
Next, the variations of the out-of-plane natural frequencies for the angular misalignment are

investigated. Fig. 8 presents the out-of-plane natural frequencies of the disk with O ¼ 1000 rad=s
when the angular misalignment varies from 0� to 5�: Fig. 8(a) shows that the natural frequency of
the (0,0) out-of-plane mode increases with the angular misalignment. However, as illustrated in
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Figs. 8(b)–(d), the frequencies for the (0,1), (0,2) and (0,3) out-of-plane modes decrease as the
misalignment increases. Note that the amounts of the natural frequency splits become large with
the angular misalignment. It is also noted that the (0,1) out-of-plane mode has the largest
frequency split compared to the other modes. On the other hand, as shown in Fig. 9, the in-plane
modes have a trend that the natural frequencies increase with the angular misalignment.

5. Non-linear dynamic responses

The non-linear dynamic responses of the displacements are analyzed when the rotating disk has
angular misalignment. The dynamic responses are computed by using the generalized-a time
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integration method [12]. In order to apply the generalized-a method to the non-linear equation
(40), the equation may be converted to

Manþ1�am
þ 2Onþ1�af

Gvnþ1�af
þ ½K� O2

nþ1�af
MF þ ’Onþ1�af

GF�dnþ1�af

þ Pðdnþ1�af
Þ ¼ Fnþ1�af

; ð49Þ

where

dnþ1�af
¼ ð1� af Þdnþ1 þ af dn; vnþ1�af

¼ ð1� af Þvnþ1 þ af vn; anþ1�am
¼ ð1� amÞanþ1 þ aman;

Fnþ1�af
¼ Fðð1� af Þtnþ1 þ af tnÞ; Onþ1�af

¼ Oðð1� af Þtnþ1 þ af tnÞ;

’Onþ1�af
¼ ’Oðð1� af Þtnþ1 þ af tnÞ; ð50Þ

in which dn; vn and an are approximated values of d; ’d and .d at time t ¼ tn; am and af are the
algorithmic parameters of the generalized-a method. The displacement and velocity update
equations are given by

dnþ1 ¼ dn þ Dtvn þ Dt2½ð1=2� bÞan þ banþ1�; ð51Þ

vnþ1 ¼ vn þ Dt½ð1� gÞan þ ganþ1�; ð52Þ

where Dt is the time step size given by Dt ¼ tnþ1 � tn; b and g are the algorithmic parameter given
by

b ¼ 1
4
ð1� am þ af Þ

2; g ¼ 1
2
� am þ af : ð53Þ

The initial conditions of this problem may be given by

d0 ¼ dð0Þ; v0 ¼ vð0Þ;

a0 ¼ M�1fFð0Þ � 2Oð0ÞGv0 � ½K� O2ð0ÞMF þ ’Oð0ÞGF�d0 � Pðd0Þg: ð54Þ

The Newton–Raphson method is used to obtain dynamic responses from the non-linear
equation (49). In order to update the displacement and the velocity with known values of dn; vn; an

and Dt; the acceleration anþ1 should be determined from Eqs. (49), (51) and (52). Substitution of
Eqs. (51) and (52) into Eq. (49) yields a non-linear vector equation for the unknown vector anþ1:
The Newton–Raphson method to determine anþ1 may be expressed as

a
ðiþ1Þ
nþ1 ¼ a

ðiÞ
nþ1 � J�1ðaðiÞnþ1ÞRða

ðiÞ
nþ1Þ; ð55Þ

where i represents the iteration number at each time step, JðaðiÞnþ1Þ is the Jacobian matrix given by

J�1ðaðiÞnþ1Þ ¼ ð1� amÞMþ 2ð1� af ÞgDtOnþ1�af
G;

þ ð1� af ÞbDt2½K� O2
nþ1�af

MF þ ’Onþ1�af
GF þ K

ðiÞ
T � ð56Þ

and RðaðiÞnþ1Þ is a vector expressed as

RðaðiÞnþ1Þ ¼Ma
ðiÞ
nþ1�am

þ 2Onþ1�af
Gv

ðiÞ
nþ1�af

þ ½K� O2
nþ1�af

MF þ ’Onþ1�af
GF�d

ðiÞ
nþ1�af

þ PðdðiÞnþ1�af
Þ � Fnþ1�af

: ð57Þ

In Eq. (56), K
ðiÞ
T is the tangent matrix of Pðdnþ1�af

Þ at dnþ1�af
¼ d

ðiÞ
nþ1�af

:

ARTICLE IN PRESS

J. Wook Heo, J. Chung / Journal of Sound and Vibration 274 (2004) 821–841 837



Using the algorithm described in the above, the non-linear dynamic responses are computed for
a rotating disk. The zero initial conditions of d0 ¼ v0 ¼ 0 are imposed and the unit impulsive
pressure is applied to the disk in the z direction. The rotating speed and acceleration are described
by the rotating speed profile shown in Fig. 10. The rotating speed increases from 0 to 1000 rad=s
with the angular acceleration 104 rad=s2 and then the speed remains constant. For time
integration, the time step size is selected as Dt ¼ 10�4 s and the algorithmic parameters without
numerical dissipation are used. The material properties and dimensions of the disk are the same as
those of the previous section. All the responses are computed at a point on the outer periphery,
which is defined by r ¼ b and y ¼ 45�:
The computed dynamic responses for the transverse displacement w are illustrated in Fig. 11.

Fig. 11(a) is for the response when the angular misalignment is f ¼ 2� while Fig. 11(b) is for the
response when the misalignment is f ¼ 0�: Regardless of the amount of angular misalignment, it
is shown in the time interval of 0–0:1 s that the transverse vibration periods and amplitudes
decrease with the rotating speed. These behaviours are caused by the stiffening effect due to the
centrifugal force. On the other hand, during the interval of the constant rotating speed, i.e.,
0:1ptp0:5; the response for f ¼ 2� demonstrates the amplitude modulation which is not shown
in the response for f ¼ 0�: This amplitude modulation is a contribution of the mode split
discussed in the previous section. Another interesting phenomenon during 0:1ptp0:5 is that the
response for f ¼ 0� oscillates about a zero value of the transverse displacement while the response
for f ¼ 2� oscillates about a non-zero value. The average values of w during 0:1ptp0:5 are
w ¼ 1:203 and w ¼ 0 mm for Figs. 11(a) and (b), respectively.
The radial and tangential displacements are plotted in Figs. 12 and 13. As shown in the time

interval 0ptp0:1 of Fig. 12, the radial displacements for both cases of f ¼ 2� and f ¼ 0�

increase as the rotating speed increases. When the disk has the constant rotating speed, the
amplitude modulation, which is not clearly visible in Fig. 12(a), exists even in the radial response
of the disk with angular misalignment. If the response is magnified, the modulation can be clearly
observed. Similar to the transverse and radial displacements, for the case of the tangential
displacement of the disk with angular misalignment, the amplitude modulation is also exhibited,
as shown in Fig. 13(a). If the disk is aligned perfectly, the radial and tangential displacements
show no amplitude modulation as illustrated in Figs. 12(b) and 13(b). The reason why all the
transverse, radial and tangential responses of the disk with angular misalignment exhibit the
modulation is that the displacements are fully coupled to each other, as shown in Eqs. (18)–(20).
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6. Summary and conclusions

The dynamic characteristics and responses are analyzed for the rotating disk with angular
misalignment. The equations of motion for the disk are derived considering the rotating speed and
acceleration. The derived equations are fully coupled equations between the transverse, radial and
tangential displacements. The equation of transverse motion is a non-linear partial differential
equation while the equations of radial and tangential motions are linear partial differential
equations. After the equations of motion and the associated boundary conditions are transformed
into the weak form, the non-linear matrix–vector equation is derived by using the finite element
method. Based on the equation linearized around the equilibrium position, the effects of angular
misalignment on the natural frequencies and mode shapes are analyzed. Furthermore, from the
non-linear dynamic responses computed by the generalized-a method, the influence of angular
misalignment on the dynamic responses is also investigated.
The results of the analysis for the natural frequencies and the mode shapes can be summarized

as follows:

1. For all the out-of-plane modes with the nodal diameter, the natural frequency is split into two if
the rotating disk has angular misalignment.

2. The amount of frequency split increases with the rotating speed as well as the angular
misalignment.

3. The (0,1) out-of-plane mode exhibits the largest amount of frequency split compared to the
other modes.

4. The asymmetric (0,1) and (0,2) out-of-plane modes rotate by approximately 90� and 45� from
the symmetric (0,1) and (0,2) modes, respectively.

5. The frequency split in the in-plane mode is caused not by the angular misalignment but by the
gyroscopic effect.

On the other hand, the analysis for the non-linear dynamic responses yields the following
results:

1. When the rotating disk has angular misalignment, the transverse, radial and tangential dynamic
responses demonstrate the amplitude modulation.

2. When the rotating speed is constant, the transverse response for the disk without angular
misalignment oscillates about a zero displacement while the response for the disk with
misalignment oscillates about a non-zero one.

3. Regardless of the amount of angular misalignment, the vibration periods and the vibration
amplitudes decrease with the rotating speed.
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